PRODUCING LAND USE LAND COVER USING SATELLITE IMAGE AND IMAGE PROCESSING TECHNIQUES A CASE STUDY OF THE SOMAJIGUDA GHMC WARD
Abstract
Keywords
References
Anderson, J. R., Hardy, E. E., Roach, J. T., & Witmer, R. E. (1976). A land use and land cover classification system for use with remote sensor data. US Geological
Cadenasso, M. L., Pickett, S. T. A., & Schwarz, K., 2007. Spatial heterogeneity in urban ecosystems: reconceptualizing land cover and a framework for classification. Frontiers in Ecology and Environment, 5, p. 80–88.
Carlson, T. N., & Arthur, T. S., 2000. The impact of land use & land cover changes due to urbanization on surface microclimate and hydrology: a satellite perspective. Global and Planetary Change,25, p. 49–65.
Carvalho, J., Soares, A., & Bio, A., 2006. Improving satellite images classification using remote and ground data integration by means of stochastic simulation.. International Journal of Remote Sensing, 27, p. 3375–3386.
Chust, G., Ducrot, D., & Pretus, J. L., 2004. Land cover mapping with patch-derived landscape indices.. Landscape and Urban Planning, 69, p. 437–449.
Dr. V Raghavswamy, Dr. S K Pathan, Dr. A K Sinha, Dr. J Krishnamurthy, Sri Uday Raj, Dr. K Venugopala Rao, Dr. K Vinod Kumar, Dr. K Sreenivas, Dr. V Sreedhara, Sri P Krishnaiah, Dr. Satish Jayanthi, Jan 2008. National Urban Information System (NUIS) Manual for Thematic Mapping Using High-Resolution Satellite Data And Geospatial Techniques. Hyderabad: NATIONAL REMOTE SENSING AGENCY, Urban Studies & Geoinformatics Group.
Gatrell, J. D., & Jensen, R. R., 2008. Sociospatial applications of remote sensing in urban environments. Geography Compass,2, p. 728–743.
Gong, P., Marceau, D. J., & Howarth, P. J, 1992. A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data.. Remote Sensing of Environment, 40,, p. 137–151.
Herold, M., Scepan, J., & Clarke, K. C., 2002. The use of remote sensing and landscape metrics to describe structures and changes in urban land uses.. Environment and Planning A, 34, pp. 1443-1458.
Johnsson, K. , 1994. Segment-based land-use classification from SPOT satellite data.. Photogrammetric Engineering and Remote Sensing, 60, p. 47–53.
Lee, J. Y., & Warner, T. A. , 2006. Segment based image classification.. International Journal of Remote Sensing, 27, p. 3403–3412.
Leica Geosystems Geospatial Imaging, LLC, 1982-2006. Leica Geosystems Geospatial Imaging 9.1 helpclassificationunsupervised_classification_dataprep. s.l.:Leica Geosystems Geospatial Imaging 9.1.
Leica Geosystems, 2005. ERDAS field guide. Norcross,. Georgia: Leica Geosystems Geospatial Imaging, LLC.
Leica Geosystems Help, 1982-2006. Leica Geosystems Geospatial Imaging 9.1 help. s.l.:Leica Geosystems Geospatial Imaging.
Lillesand, T. M., Kiefer, R. W., & Chipman, J. W, 2008. Remote sensing and image interpretation. New York: John Wiley & Sons, Inc.
Lo, C. P., & Choi, J., 2004. A hybrid approach to urban land use/cover mapping using Landsat 7 Enhanced Thematic Mapper Plus (ETMþ) images. International Journal of Remote Sensing, 25, p. 1687–2700.
Maktav, D., Erbek, F. S., & Jurgens, C., 2005. Remote sensing of urban areas. International Journal of Remote Sensing,26, p. 655–659.
Meenu Rani, Pavan Kumar, Manoj Yadav, R. S. Hooda, 2011. Wetland Assessment and Monitoring Using Image Processing Techniques: A Case Study of Ranchi, India. Journal of Geographic Information System, 3, pp. 345-350.
Miller, R. B., & Small, C., 2003. Cities from space: potential applications of remote sensing in urban environmental research and policy. Environmental Science & Policy,6, pp. 129-137.
Nangendo, G., Skidmore, A. K., & Oosten, H, (2007). Mapping East African tropical forests and woodlands – a comparison of classifiers.. ISPRS Journal of Photogrammetry and Remote Sensing, 61, p. 393–404.
Ozkan, C., & Erbek, F. S., (2005). Comparing feature extraction techniques for urban land-use classification.. International Journal of Remote Sensing, 26, pp. 747-757.
Prenzel, B., & Treitz, P., 2005. Comparison of function- and structure-based schemes for classification of remotely sensed data. International Journal of Remote Sensing, 26, p. 543–561.
Qihao Weng, 2011. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sensing of Environment.
Rajesh Bahadur Thapa*, Yuji Murayama, 2009. Urban mapping, accuracy, & image classification: A comparison of multiple approaches in Tsukuba City, Japan. Applied Geography, 29, pp. 135-144.
Thapa, R. B., & Murayama, Y. , 2008. Land evaluation for peri-urban agriculture using analytical hierarchical process and geographic information system techniques: a case study of Hanoi.. Land Use Policy, 25, p. 225–239.
United Nations, Revised, 2014. World’s population increasingly urban with more than half living inurban areas [Online]. Available at : http: / /www.un.org/en/development /desa/news/population/world-urbanization-prospects-2014.html[Accessed 08 July 2014].
Wang, F., 1990. Improving remote sensing image analysis through fuzzy information representation.. Photogrammetric Engineering and Remote Sensing, 56,, p. 1163–1169.
Wikipedia, 2015. Hyderabad. [Online] Available at: https://en.wikipedia.org/wiki/Hyderabad [Accessed 11 July 2015].
Zhang, J., & Foody, G. M, 2001. Fully-fuzzy supervised classification of sub-urban land cover from remotely sensed imagery: statistical and artificial neural network approaches. International Journal of Remote Sensing, 22, p. 615–628.
Refbacks
- There are currently no refbacks.
Copyright © 2012 - 2023, All rights reserved.| ijitr.com
International Journal of Innovative Technology and Research is licensed under a Creative Commons Attribution 3.0 Unported License.Based on a work at IJITR , Permissions beyond the scope of this license may be available at http://creativecommons.org/licenses/by/3.0/deed.en_GB.