A CLUSTER-BASED MOBILE RELAY IN DATA-INTENSIVE WIRELESS SENSOR NETWORKS
Abstract
Wireless Sensor Networks (WSNs) are increasingly used in data-intensive applications such as micro-climate monitoring, precision agriculture, and audio/video surveillance. A key challenge faced by data-intensive WSNs is to transmit all the data generated within an application’s lifetime to the base station despite the fact that sensor nodes have limited power supplies. We propose using low-cost disposable mobile relays to reduce the energy consumption of data-intensive WSNs. Our approach differs from previous work in two main aspects. First, it does not actively forward data from source node to base station but continues to listen to the source nodes and monitors the signal level around it. It gets active and forward the data from source node to base station, when there is a noticeable change in the signal level. In the sleeping time of the mobile relay, it does not consume more energy. Finally this technique produces an efficient energy optimization that can be integrated in the system that can be extensive simulations to examine the efficiency of our technique with varied network settings.
Keywords
References
R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and D. Culler, “An analysis of a large scale habitat monitoring application,” in SenSys, 2004.
L. Luo, Q. Cao, C. Huang, T. F. Abdelzaher, J. A. Stankovic, and M. Ward, “Enviromic: Towards cooperative storage and retrieval in audio sensor networks,” in ICDCS, 2007, p. 34.
D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Estrin, and J. Heidemann, “An evaluation of multi-resolution storage for sensor networks,” in SenSys, 2003.
S. R. Gandham, M. Dawande, R. Prakash, and S. Venkatesan, “Energy efficient schemes for wireless sensor networks with multiple mobile base stations,” in Globecom, 2003.
J. Luo and J.-P. Hubaux, “Joint mobility and routing for lifetime elongation in wireless sensor networks,” in INFOCOM, 2005.
Z. M. Wang, S. Basagni, E. Melachrinoudis, and C. Petrioli, “Exploiting sink mobility for maximizing sensor networks lifetime,” in HICSS, 2005.
A. Kansal, D. D. Jea, D. Estrin, and M. B. Srivastava, “Controllably mobile infrastructure for low energy embedded networks,” IEEE Transactions on Mobile Computing, vol. 5, pp. 958– 973, 2006.
S. Jain, R. Shah, W. Brunette, G. Borriello, and S. Roy, “Exploiting mobility for energy efficient data collection in wireless sensor networks,” MONET, vol. 11, pp. 327–339, 2006.
W. Wang, V. Srinivasan, and K.-C. Chua, “Using mobile relays to prolong the lifetime of wireless sensor networks,” in MobiCom, 2005.
D. K. Goldenberg, J. Lin, and A. S. Morse, “Towards mobility as a network control primitive,” in MobiHoc, 2004, pp. 163–174.
A. A. Somasundara, A. Ramamoorthy, and M. B. Srivastava, “Mobile element scheduling with dynamic deadlines,” IEEE Transactions on Mobile Computing, vol. 6, pp. 395–410, 2007.
Y. Gu, D. Bozdag, and E. Ekici, “Mobile element based differentiated message delivery in wireless sensor networks,” in WoWMoM, 2006.
K. Dantu, M. Rahimi, H. Shah, S. Babel, A. Dhariwal, and G. S. Sukhatme, “Robomote: enabling mobility in sensor networks,” in IPSN, 2005.
http://www.k-team.com/robots/khepera/ index.html.
J.-H. Kim, D.-H. Kim, Y.-J. Kim, and K.-T. Seow, Soccer Robotics. Springer, 2004.
Refbacks
- There are currently no refbacks.
Copyright © 2012 - 2023, All rights reserved.| ijitr.com
International Journal of Innovative Technology and Research is licensed under a Creative Commons Attribution 3.0 Unported License.Based on a work at IJITR , Permissions beyond the scope of this license may be available at http://creativecommons.org/licenses/by/3.0/deed.en_GB.