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Abstract— In this paper, the Discrete Wavelet Transform is implemented for detection of ten types of the 

power quality (PQ) disturbance signals. Further, four features of the single as well as the combined PQ 

signals disturbances are extracted from these wavelet transforms coefficients. The features are plotted 

w.r,t their decomposition levels in order to distinguish the disturbances with their feature value.  

Moreover, these features are again fed as inputs Hidden Markov Models (HMMs) classifiers to classify 

the disturbances by the calculating the classification accuracy (CA).  
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I. INTRODUCTION 

The Power Quality has emerging a pressing 

concern due to the continuous increasing of the 

number of distributing loads of the public sectors. 

The disturbances in their loads create the deviation 

of voltage and current waveform from the ideal that 

declines the performance and the lifespan of the 

equipment’s [1] in terms of power quality (PQ). 

The decrease in voltage signal is identified as sag 

and similarly the opposite called as swell. The 

electronically controlled capacitor switched 

operation creates the transient and similarly  

multip le integral frequency known as harmonics, 

notch are also observed in solid  state power 

electronics instruments. In addition to these PQ 

disturbances, the spike is introduced due to the 

lightening, and the arc furnace operation conceives 

the flicker. In order to enhance the PQ with 

mitigating these disturbances, the signal patterns 

must be discriminate first. As a result, the research 

has been directed towards the automatic 

classification of the disturbances in deregulated 

power system where the power quality is one of the 

important discriminating factors for elect ing 

different suppliers [2]. However, the existing 

automatic recognition methods for t ime series 

pattern need enhancement with the efficiency and 

reliability.   

The  several authors has introduced different 

methodology such as the fast operated Fourier 

transform (FT), the short-time Fourier transform 

(STFT), the wavelet t ransform (WT), the Neural 

Network, the  Fuzzy logic, the S-transform,  

Kalman filter  have been used over past year [3]-

[10]. The STFT is suitable fo r only steady state 

disturbances like sag and swell but the transient 

signals including notch cannot analyzed due to the 

fixed window[11]-[13].The time frequency 

resolution of the signals in STFT analysis is limited 

by Heisenberg-Gabor inequality. The 

Multiresolution Analysis (MRA) based Wavelet 

Transform (WT) is extensively used for 

characterizat ion of non-stationary signal which  

provides the time frequency relationship by 

convolving the dilated and translated version of the 

wavelet with signal. The important features can be 

extracted with these coefficients in order to reduce 

the data size for classification. The feature 

extraction is also plays a crucial ru le for proper 

classification of PQ d isturbances. In other words 

the feature extraction is a process of extract ion of 

minimum informat ion from a phenomena which  

provides maximum differentiat ion among phoneme 

classes [14]-[18].  

However, researcher has been focus on automatic 

detection and classification of power quality 

disturbances  with  Artificial Neural Network 

(ANN), and Fuzzy logic etc. has been used applied   

but they are not robust like the data min ing based 

classifiers [19]-[22]. The ANN requires retrain ing 

when a new phenomenon is added and becomes 

tedious when a huge number of disturbance classes 

are present. So the Hidden Markov Models 

(HMMs) has been introduced to classify the large 

number of phenomena [22-25]. 

The paper is organized as follows. Section II of the 

paper describes the brief theory of the DWT for 

detection and the Section III deals with the feature 

extraction process and the two types of classifiers 

used in computing the classification accuracy. The 

brief description about the classification approach is 

given in Section-IV. The Section V has carried out 

the process of detection using the theory described 

in the section II. The Section VI has used the 

features extraction methods described in section III. 

Similarly the Section VII has been given with   

classification result. Finally, the Section VIII has 

been provided with the concluding remarks. 
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II. DETECTION US ING DESCRETE 

WAVELET TRANSFORM 

The detection of the PQ d isturbance is carried out 

with the widely used simple DWT decomposer.    

Discrete Wavelet Transform 

The discrete wavelet transform (DWT) is one of the 

good techniques used to decompose a discretized  

signal into different resolution levels.  In the DWT 

decomposition, the wavelet function generates the 

detail coefficients of the decomposed signal 

whereas the scaling function generates the 

approximation  coefficients of the decomposed 

signal. The expression for DWT [15] 
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where “k” is an integer that used to refer the sample 

with the mother wavelet “g”. Similarly, scaling 

parameter 0

ma a  and translation parameter

0 0

mb nb a . Both ‘a and b’ vary in the discrete 

manner. At the first level decomposition, the time 

signal ‘  S n ’ decomposed in to the detailed ‘ 

 1d n ’ and  the s moothed ‘  1c n ’  through 

quadrature mirror filter i.e the high pass ‘h(n)’ and 

low pass filters ‘l(n)’. Thus the smooth version ‘

 1c n ’ contains lower frequency components than 

the detail version ‘  1d n ’. Mathemat ically, they 

can be represent as 
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where, ‘  0c k ’ is the discretized time signal of 

the original signal(sampled version of ‘  S n ’). 

The number of samples reduced to half as the 

output after each of decomposition, is down 

sampled by a factor of ‘2’. Moreover, these 

approximation  coefficients are further fed  to the 

quadrature mirror filters in order to iterate the 

process. The ‘Quadrature mirro r filters’ which are 

related by the equation [18],[12] 

     1 1
n
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where, L is the filter length. The basic block 

diagram of the decomposition is given in Fig2. 

III. THEORY OF THE FEATURE 

EXTRACTION AND CLASSIFICATION 

Feature extraction 

The PQ disturbance signals decomposed with 

DWT decomposition and with the resulted 

approximations and details at each of the 

decomposition levels four features are ext racted 

using the given equations [26],[27].  
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where i=1, 2, 3…………………..l. (decomposition 

level number) and N is the number of samples in  

each decomposed dataset. The disturbance signals 

such as like sag, swell, sag with harmonic and 

swell with harmonic are classified using the 

standard deviation [11] but all type of disturbances 

are not properly d istinguished. So these extracted 

features are fu rther fed as input to the d ifferent 

classification algorithm to reduce the 

computational burden of the raw data. The 

classification algorithms are discussed in the next  

section.  

IV. CLASSIFICATION APPROACH 

The improvement of quality of power is simulated 

by the proper recognition of the d isturbances 

presented in system. The recognition rate has 

enhanced by the implementation of the automated 

classifiers .There are 20900 signals are synthesized 

for all ten types of disturbances of each with 28 

features of 7
th

 level of DWT decomposition. At the 

each level of decomposition, each outcome is 

normalized with the maximum value to formulate 

the dataset. The basic classification operation is 

divided as train ing and testing for which  60% of 

the dataset are fed as the train ing data to build a 

training model and the rest 40% of data are 

implement for testing purpose.   

Artificial Neural Network (ANN) 

The design of neural network I the real world is 

complex. The ANN is iterat ive process. The inter-

related skeletal steps are present subsequently. 

Step 1: Determination of the availability of 

measurements (input) or feature (pre-

processed) data.  
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Step 2: Consideration of the availab ility and 

quantity of training and the test data.  

Step   3:  Considering the availability of suitable 

and known ANN system structures. 

Step   4:   Developing an ANN simulat ion. 

Step   5:  Train ing of the ANN system.  

Step   6:  Simulating the ANN system 

performance-using test set.  

Step 7:  Iterating until the desired output is 

gained. 

A. ANN  

An ANN module consists of neurons and their 

connections form a network like structure. The 

basic element of ANN is called neuron. The input 

of a neuron is generally an input column-vector of 

a [ (1), (2)........ ( )]Tx x x x i  pre-processed data. 

Where, the nth element of the input vector, ‘ x(n)’, 

is connected to a neuron ‘p’ by a weight factor w(p, 

i) . This weight factor then forms a weight vector 

for the neuron  ‘p’, [ ( ,1)............. ( , )]pw m p m p i  

. The output of the neuron is a linear combination 

the weight vector ‘wp ‘  , with of the input vector ‘x’ 

as shown in (9) 

( , ) ( ) 1...T

pu wx w p i x i for i I             (9)                                                                         

The data path is constructed with three layers, one 

hidden layer and one for the output layer which is 

connected in the traditional feed-forward  

architecture with input layer. The inputs come 

directly from the data bus into the neurons at the 

hidden layer.  The structure of this MFNN is 3-3-1. 

One disturbance class and other, without 

disturbance class (pure sine wave) are considered. 

The classificat ion accuracy is found out according 

to the equation as given below.   

Classification Accuracy (%) 

=
                                  

                                   
                  (10)                                             

B. HMM 

After the disturbances are decomposed, the features 

vectors are extracted. The HMMs is applied to 

feature vector in order to determine the maximum 

likelihood in  the data set. The HMM, extension of 

the Markov model in which  the stochastic process 

is not directly observable through another set of 

stochastic processes. However, an HMM can be 

defined as λ = (N, M, π, A, B) where the parameter 

N denotes the number of states of the model, M is 

the number of distinct observation symbols per 

state, π is the initial state distribution vector, 

similarly , A  denotes the state transition probability 

and finally B is observation probability matrices 

respectively. A discrete HMM is explained in  

[23],[24] through the model of indiv idual states.  

Like other classifiers, the HMMs operation is 

partitioned into the training and the testing stage of 

dataset. The HMM training model uses both 

continuous and discrete density modelling and also 

employs the Baum-Welch  algorithm to construct 

the HMMs [25].  Starting with a very simple 

prototype system, the HMMs are repeatedly 

modified and re-estimated until the required level 

of model complexity and performance is reached. 

In this study, ten different Figures and Tables 

HMMs are trained fo r ten d isturbance classes. For 

this classification process, the logarithmic 

probability of each model output is determined for 

the unknown input signals. In order to develop a 

proper HMM, the selection of the optimum number 

of state and the density function are very important 

but there is no exp licit rule for the selection of 

these factors except the application type and the 

parameters. In this work, three states are selected to 

stipulate the output with the Gaussian mixtures 

function. The prior distribution is used over the 

state transition to favour the transitions in order to 

stay in the same state. The prior is multiplied by the 

likelihood function and then normalized accord ing 

to the Bayes theorem. The CA depends on the 

number of matching of the testing with the trained 

model using the equation (10) 

V. LOCALIZATION RES ULT 

TABLE.1 Power signal Class labels 

PQ signals Class labels 

Sag C1 

Swell C2 

Interruption C3 

Oscillatory transient C4 

Flicker C5 

Harmonic  C6 

Sag+harmonics C7 

Swell+harmonics C8 

Notch C9 

Spike C10 

The theory described in section II has been used to 

calculate the approximate and detailed coefficients 

at four levels using the DWT for all the ten PQ 

disturbance signals [18].  

 

Figure 2. DWT decomposition of pure sine wave 

with sag 
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There are ten types of disturbances are simulated 

with 3.2 kHz sampling frequency and fundamental 

frequency of 50 Hz. The Table.1 shows the class 

levels given to PQ signals. The MATLAB code 

along with the wavelet decomposition algorithm 

has been used for the purpose of detection. The 

decomposition levels and the corresponding 

description for the sine wave with sag, sine wave 

with swell, and sag with harmonics and swell with 

harmonics are shown in Fig.2 to Fig.5 respectively. 

From, Fig.2-Fig,5 it  is observed that the point of 

disturbances are clearly identified even at the finer 

decomposition levels. 

 

Figure 3. DWT decomposition of pure sine wave 

with swell 

 

Figure 4. DWT decomposition of sag with 

harmonic 

 

Figure 5. DWT decomposition of swell with 

harmonic 

VI. FEATURE EXTRACTION RES ULT 

In this paper, the three features namely the energy; 

the entropy and the standard deviation of ten PQDs 

along with the normal sine wave are extracted with 

the DWT coefficients. The standard deviation of 

different decomposition levels are plotted with 

DWT in Fig. 6(a) and 6(b). The horizontal axis 

represents the level of decomposition and the y-

axis represents the magnitude.  At higher frequency 

zone in both the cases the oscillatory voltage 

signal, sag signal with harmonic and swell signal 

with harmonic are differentiated which are shown 

in Fig.6(a) and (b) . The peak of the standard 

deviation curve in notch is higher than the spike. 

Overall, the peak of the standard deviation curve of 

notch and spike deviate from others in proportional 

their magnitude and duration of disturbance, shown 

in Fig. 6(b). 

 

Figure. 6(a).STD curve in DWT 

 

Figure. 6(b).STD curve in DWT 

 

Figure 7(a).  Energy curve in DWT 
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Figure. 7(b).Energy curve in DWT 

 

Figure 8 (a). Entropy curve in DWT 

 

Fig.8 (b). Entropy curve in DWT 

The energy at different levels are plotted using 

extracted from DWT coefficients shown in 

Fig.7.(a) and (b). For DWT, the oscillation, the sag 

with harmonic and also the swell with harmonic 

signals are differentiated from other signals at the 

higher frequency zone. The harmonic signals are 

considered as stationary in power system. The 

magnitude of harmonic signal and normal voltage 

energy curve are same using DWT. Similarly, the 

notch possesses high energy level than others. The 

energy deviation of the notch and the spike are 

more prominent than the others as deviations are 

more which shown in Fig.7 (b).  

Similarly the entropy curves are also plotted 

against the levels present in Fig.8. (a),(b).  But all 

the signals are not clearly classified with the feature 

plot.  Hence, classifiers such as MLP and HMM are 

implemented to make a proper discrimination 

among the PQ phenomena.  

VII. RES ULTS  OF THE CLASSIFICATION 

TABLE.2 CA (%) of pure signals 

Signal class %CA in MLP %CA in HMM  

C1 67.42 75.21 

C2 63.54 99.56 

C3 60.45 0 

C4 65.07 98.36 

C5 73.40 93.3 

C6 57.32 47.61 

C7 68.17 43.32 

C8 70.21 73.60 

C9 69.38 100 

C10 69.76 98.33 

Total 67.38 72.92 

TABLE.3 CA (%) of signals with 20dB noise 

Signal class %CA in MLP %CA in HMM 

C1 61.43 93.04 

C2 60.44 91.03 

C3 61.58 0 

C4 54.27 100 

C5 62.57 80.74 

C6 58.59 1.07 

C7 56.98 34.40 

C8 60.12 55.94 

C9 57.01 93.03 

C10 58.54 91.07 

Total         57.02 61.03 

TABLE.4  CA (% ) of signals with 30dB noise 

Signal class %CA in MLP %CA in HMM 

C1 62.86 94.78 

C2 61.93 84.65 

C3 62.05 0 

C4 58.18 100 

C5 59.26 77.63 

C6 63.52 1.71 

C7 60.14 47.78 

C8 55.50 45.64 

C9 58.45 99.18 

C10 59.62 92.21 

Total 59.05 64.35 

The total 28090 numbers of signals are simulated 

for the feature ext raction and each of the signals are 

fed for decomposition up to ninth finer levels as a 

result total 27*28090 featured matrix is formed. 

For each of the dataset, 60% of the data are treated 

as training data and rest 40% of data are fed to test 

the unknown signals.   



   Swarnabala Upadhyaya* et al. 
  (I JITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH  

Volume No.3 , Issue No.4, June - July 2015, 2253 – 2259. 

2320 –5547  @ 2013 http://www.ijitr.com All rights Reserved.   Page | 2258 

The two techniques are applied to  classify d ifferent 

types of PQ d isturbances in order to d iscriminate 

the classifiers with their efficiency as well the 

inefficacy.  

The classification accuracy of pure PQ signal is 

compared in the Table.2. Except the slow 

disturbances like interruption and harmonic, all 

other disturbances are classified  efficiently than the 

MLP. Here also, HMMs with 5 states is applied.  

The overall classification accuracy of HMMs is 

more in case of MLP. In  order to get the efficacy of 

the proposed HMM with large class data, the 

signals are classified in noisy environment. The 

pure PQ disturbances are added with noise of SNR 

20db and 30db in order to get the disturbances in 

noise environments. The aforementioned features 

are ext racted and the % CA is shown in  Table.3 

and Table.4.    

These above Tables (Table.3-Table.5) provide the 

classification accuracy computed using the two 

classifiers with and without noise. The same data 

sets are fed to the two  classifiers. Moreover, Tables 

has been demonstrated that the %CA values of 

such huge data set are good with the HMMs 

classifier as compare to the ANN based MLP. The 

fast disturbances affect the system more than the 

slow disturbances. Moreover, the automated 

HMMs classifier discriminates the fast disturbance 

perfectly. The fast disturbances are also 

discriminates from the slow disturbance. As overall 

accuracy get reduces as the interruption, harmonic 

signals are not classify. In spite of this the HMMs 

provides better %CA with large class of 

disturbance.    

VIII. CONCLUS ION 

The identificat ion of PQ d isturbance signals are 

presents with the application of DWT. The features 

extracted from DWT decomposition are fed two  

automatic classifiers based on artificial intelligence 

which  approach provide a novel scope for PQ 

analysis. The CA of the HMMs classifiers based on 

maximum likelihood is presented in this paper to 

manifest the better recognition rate. The 

recognition rate and performance of the HMMs 

classifier is better than the traditional MPL. In spite 

of the low %CA of slow disturbance the 

disturbances are classified properly in HMMs. The 

HMMs provides discrimination between the slow 

and fast disturbance which helps the system protect 

from the dangerous fast disturbance like transients. 

So, the HMMs a good classifier for the modern 

complicated power system with uncommon 

disturbance.   
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