
Avanti Khare * et al.
(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

Volume No.5, Issue No.4, June – July 2017, 6585-6588.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 6585

A Review on Small Files in HADOOP
 A Novel Approach To Undestand Small Files Problem In Hadoop

AVANTI KHARE

Dept. of Information Technology

Sreenidhi Institute of Science and Technology

Hyderabad, India

Prof. Dr. B. INDIRA

Dept. of Information Technology

Sreenidhi Institute of Science and Technology

Hyderabad, India

Abstract— Hadoop is an open source data management system designed for storing and processing large

volumes of data, minimum size being 64MB. Storing and processing of Small Files smaller than the

minimum block size cannot be efficiently handled by hadoop because Small Files results in lots of seeks

and lots of hopping between the datanodes. A survey on the existing literature has been carried out to

analyze the effect / solutions for the Small Files problem in hadoop. This paper presents the same and lists

many effective solutions for this problem and further this paper says that there is a need to carry out lot

of research on small file problem in order to attain effective and efficient solutions.

Keywords- Hadoop; HDFS; Small Files; Datanode;

I. INTRODUCTION

Hadoop is an open source data management system

and is a combination of Distributed file system and

Analytic Algorithms. It consists of two core

components:

First is HDFS (Hadoop Distributed file system)

which helps to save the entire files and designed for

processing large volumes of data, with a default size

of 64MB [1]. Hadoop block size is by default set to

64, 128, or 256MB and so on, if the file size is less

than 75% of default size then those files are

considered as Small Files [16]. If many Small Files

are stored then reading through Small Files will

cause lots of seeks and lots of hopping from one

datanode to other datanode for its retrieval, thus

leading to inefficiency in data accessing patterns.

Second is MapReduce which help to do analysis on

the entire set of the file, it usually processes a block

of input at a time i.e. by default FileInputFormat. As

you have lots of Small Files, then each time when

task is processed it will process very little input

causing extra logging of files [2, 3].

HDFS is a bucket where you can dump the data;

MapReduce is used for data processing purpose.

Hadoop is not really as that of database where you

can store the data and pullout data and having no

queries involved in it as that of SQL. Databases are

centralized systems that use multiple machines. The

entire work is divided between one or more systems

and all the data processing software is housed on

another server. [6] The way of utilizing RDBMS

and Hadoop cloud storage includes two levels of

storage modes, front end uses database for data

accessing, and back end uses hadoop storage for

storing large database files. Hadoop is more as that

of data warehousing system, this is the reason it

needs MapReduce for processing the data. [15].

Small Files are produced from larger logical files

i.e. they are pieces of larger files which are

produced during real time data collection and are

directly copied into hadoop. HDFS supports

appending i.e. adding or attaching files and very

common way of saving files in hadoop is to write

them in the form of chunks into HDFS. In some

cases, files may be inherently small. The reason why

companies produce Small Files is due to collection

of real time data, system generates files which are

smaller i.e. less than 75% of the default size is

copied directly into hadoop.

Fig 1. Small files in hadoop

II. SMALL FILES IN HADOOP: PROBLEMS

AND SOLUTIONS

Why small file problems exist in hadoop?

There are two primary reasons namely NameNode

memory management and MapReaduce

Performance.

A. NameNode memory management problem:

If you have some millions of files and each file

requires one block, NameNode may need some GB

of memory. NameNode has to read the data of every

file from cache, reading such GB of data will cause

delay during the start-up time. To avoid the delay

reduce the number of Small Files on your clusters

[4]. Two solutions for solving memory problem is

by Hadoop Archive Files (HAR) and Federated

NameNode.

B. HAR files:

These files are produced from the files that exist in

HDFS. It reduces the NameNode space footprint for

Small Files, processing and accessing, which leads

to less efficiency. HAR files are stored on disk

Avanti Khare * et al.
(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

Volume No.5, Issue No.4, June – July 2017, 6585-6588.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 6586

randomly, reading such file requires index access

i.e. to find the location of file and finding HAR file.

Reading these files is slower task than reading from

HDFS. HAR files can solve the NameNode memory

problem, but it reduces the processing performance.

HAR Files can be a good solution if the files are not

frequently access. [18] NHAR (New Hadoop

Archive mechanism based on HAR to improve the

memory utilization and efficiency of accessing

Small Files. They tried to extend the capability

which allows additional file insertion in existing

files. Resulting improvement on small I/O

performance and additional file storage to existing

archive files, archiving time is reduced nearly 85%.

C. Federated NameNodes:

It allows having multiple NameNodes in cluster,

storing subset of objects. This reduces need of

storing subset of objects metadata on the single

machine. NameNode knows about the particular

object to be used, if you want to get any file then

you must know which NameNode you have to use.

Federation does not solve performance problem, it

adds unnecessary complexity in hadoop installation

and administration. If it is considered for solving

small file problem, then more mechanisms are

required for solving the problem [17]

D. MapReduce performance:

As discussed previously the performance will be

affected due to combination of random disk I/O and

managing many map tasks which are the major

performance limiting factor in MapReduce. To solve

this problem use hadoop append capabilities, file

sequencing, Hive configuration settings, etc [17]

III. LITERATURE REVIEW

Grant Mackey, Saba Sehrish, Jun Wan Stated an

approach for storing Small Files in HDFS efficiently

and improving the memory utilization for metadata.

Client is assigned with quota i.e. the available

amount of files that are allowed to access and use

from user directories. Depending upon maximum

number of files per directory and memory for user

directory. Here ‘harballing’ method is considered

which collects Small Files in single large file.

Provides the functionalities to complete a new job

without killing by the JobTracker due to quota

mechanism. The result of this experiment shows

better functionality and efficient usage of HDFS.

Also shows that there can be reduction in metadata

footprint of main memory by factor of 42 of its

original size. [4]

Bo Dong, Qinghua Zheng, Feng Tian, Kuo-Ming

Chao, Rui Ma, Rachid Anane in journal they

described how to store and access the Small Files.

The issue regarding to the identifying the cut off

points between the large files and Small Files i.e.

“To what extent the Small Files are small”. Next is

the classification of files i.e. pieces of large files and

the files that are originally small. The sequence file

problems are that it does not support data deletion or

updated. They adopted file merging and grouping

strategy which leads to reduction in disk arm

movements when requested. They described the

three level prefetching and caching strategies for the

purpose of improving the accessing efficiency. This

approach can reduce the per- file metadata

interactions with server, decrease the I/O cost of

fetching the files from disk, reduce the time taken

for transferring the files [5]. Another paper states

that adopted FMP(File merging and prefeching)

technique, in which merged files and index files are

stored on datanode, which results in better

efficiency in storing and processing Small Files in

HDFS[13]

Sankalp Mitra, Suchit Bande, Shreyas Kudale,

Advait Kulkarni, Asst. Prof. Leena A. Deshpande

in journal they illustrated the use of MapReduce to

implement FP growth algorithm. Their experiment

shows that IPFP (Improved parallel FP growth) is a

feasible solution for speedup and mining efficiency,

avoid memory overflow and reduction in I/O

overhead. The IPFP growth is migrated to

MapReduce environment. There are still some

defects in handling lots of Small Files datasets. [8]

Kashmira P. Jayakar, Y.B.Gurav They discuss

about the EHDFS (Extended Hadoop Distributed

file system) and HDFS. In EHDFS files are stored in

a single file called combined file on Datanode.

Indexing mechanism is to access the files and

reduces the load on NameNode and I/O

performance. EHDFS improves accessing and

storing efficiency and reduces time required for

processing the Small Files [7]. EHDFS includes

operations like file extraction, file prefetching and

file mapping. It reduces the number of node failure,

thus reducing performance lost in the system.

Burden on memory and time required for processing

is reduced [10]. The paper proposes the Optimized

hadoop mechanism, the experiment result shows

that processing performance of Small Files is

reduced up to 90.83% and memory utilization of

NameNode for storing metadata of files [12]. A

novel approach for handling Small Files considering

the file size of range 32KB – 4096KB, cluster

settings and varying the ranges of file size, results in

reducing by 10% the storage required for metadata

in main memory of NameNode [20]. Files are stored

in index file in form of key value pairs, the files

should be judged and then uploaded to HDFS

cluster. Improved HDFS has lower memory

consumption as compared to the original HAR and

HDFS [21]

Priyanka Phakade, Dr. Suhas Raut When HDFS

client requests file in HDFS. NameNode permits for

storing files in HDFS. Then NameNode combines

the file in a single split which will be acting as an

input to map task, further output is given to multiple

Avanti Khare * et al.
(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

Volume No.5, Issue No.4, June – July 2017, 6585-6588.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 6587

reducers where reducers will give sorted merge

output. Thus number of MapTask is reduced by

reducing the processing time [9]

Linthala Srinithya, Dr. G. Venkata Rami Reddy

Journal states analysis and performance of HDFS

and LFS (Local File System) with respect to the

read and write approach. They setup a hadoop

cluster and design an interface which defines the

size of file, time taken for uploading and

downloading. The resulted that write performance

for Small Files are not having much difference

between the HDFS and LFS, while in case of large

files they resulted in performance difference. That

LFS shows better efficiency for handling Small

Files, while in case of large files it will take lot of

time for reading and writing. The dotted line

represents the average of three tests for writing the

files in LFS and solid lines represents performance

of HDFS [11]

Fig 2. Comparison between HDFS and LFS files

Fang Zhou, Hai Pham, Jianhui Yue, Hao Zou,

Weikuan Yu Stated an optimized MapReduce

framework for Small Files problem, two techniques

SF Layout (Small File Layout) and CMR

(Customize MapReduce). Their experiment shows

that SFMapReduce decrease memory pressure on

NameNode, provides better retrieval throughput and

loading. Also stated that nearly 14.5 – 20.8 times

improvement was achieved by SFMapReduce as

compared to HAR Layout. [14]

Passent M EIKafrawy, Amr M Sauber,

Mohamed M Hafez Illustrated Enhanced HDFS

architecture which they called as HDFSX, where the

architecture would support large files and Small

Files, this architecture solves the problem related to

Small Files in HDFS such as NameNode memory

usage, Centralized point failure and NameNode

overhead. But this is not suitable for real

environment. In future would like to apply some

changes in hadoop codes and libraries [22]

Yingchi Mao, Bicong Jia, Wei Min and Jiulong

Wang Stated the optimized scheme through SFIM

(structured index file merging) by two level file

index, prefetching and caching strategy, structured

metadata storage, to reduce the I/O operations and

improving the access efficiency of Small Files.

Their experimental results states that the access time

is reduced up to 50-80%. SGIM is proposed to

improve storage performance, which out performs

sequence file and HAR files [19]. Further some

advancement made to HDFS in different paper

stating that files should be sorted depending on their

particular extension and merging into zip files. For

reading file cache is established, thus resulting a

program to read easily and quickly, reducing time of

reading by 92% and writing by 80% [23]. In other

paper depending on novel technique they stated that

depending on file merge, caching and correlation

approach it resulted that accessing efficiency was

improved up to 88.57% compared to HAR solution

[24].

IV. CONCLUSION

The objective of writing this paper is to summarize

an overview of Small Files occurring in hadoop, and

less focusing about the technology described in the

paper or journals. The purpose is to do analysis on

the problems occurring due to large number of

Small Files in hadoop and to state the solutions

proposed to overcome the Small Files problem. The

paper discusses about the technologies used and

their experimental results to improve the accessing

and processing efficiency of Small Files. Also tried

to discuss some of the application related to the

subject.

V. REFERENCE

[1] “Hadoop: The Definitive Guide” Tom White

[2] The Small Files Problem by Tom White

February 2, 2009

[3] “Apache Hadoop” http.apache.org/2009

[4] “Improving Metadata Management for Small

Files in HDFS”. Grant Mackey, Saba

Sehrish, Jun Wang, University of Central

Florida, Orlando. 978-1-4244-5012-

1/09/$25.00 ©2009 IEEE

[5] “An optimized approach for storing and

accessing Small Files on cloud storage”. Bo

Dong, Qinghua Zheng, Feng Tian, Kuo-Ming

Chao, Rui Ma, Rachid Anane MOE. Journal

of Network and Computer Applications 35

(2012) 1847–1862

[6] “Hadoop: What It Is And How It Works”

Brian Proffitt May 23, 2013

[7] “Efficient Way for Handling Small Files

using Extended HDFS”. Kashmira P.

Jayakar, Y.B.Gurav, International Journal of

Computer Science and Mobile Computing,

Vol.3 Issue.6, June- 2014, Pune University,

India

[8] “Efficient FP Growth using Hadoop-

(Improved Parallel FP-Growth)”. Sankalp

https://blog.cloudera.com/blog/author/tom/
https://blog.cloudera.com/blog/2009/02/the-small-files-problem/
http://readwrite.com/author/brian-proffitt/

Avanti Khare * et al.
(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

Volume No.5, Issue No.4, June – July 2017, 6585-6588.

2320 –5547 @ 2013-2017 http://www.ijitr.com All rights Reserved. Page | 6588

Mitra, Suchit Bande, Shreyas Kudale, Advait

Kulkarni, Asst. Prof. Leena A. Deshpande.

International Journal of Scientific and

Research Publications, Volume 4, Issue 7,

July 2014 1 ISSN 2250-3153, VIIT, Pune

[9] “An Innovative Strategy for Improved

Processing of Small Files in Hadoop”.

Priyanka Phakade1, Dr. Suhas Raut,

International Journal of Application or

Innovation in Engineering & Management

(IJAIEM) Volume 3, Issue 7, July 2014,

Solapur

[10] “Managing Small Size Files through

Indexing in Extended Hadoop File System”.

K. P. Jayakar, Y. B. Gurav. International

Journal of Advance Research in Computer

Science and Management Studies Volume 2,

Issue 8, August 2014 University of Pune

India

[11] “Performance Evaluation of Hadoop

Distributed FileSystem and Local File

System”. International Journal of Science

and Research (IJSR) ISSN +Volume 3 Issue

9, September 2014 Linthala Srinithya, Dr. G.

Venkata Rami Reddy, JNTUH, Hyderabad,

India

[12] “Improving the Performance of Processing

for Small Files in Hadoop: A Case Study of

Weather Data Analytics”. Guru Prasad M S1,

Nagesh H R 2, Deepthi M. Guru Prasad M S

et al, / (IJCSIT) International Journal of

Computer Science and Information

Technologies, Vol. 5 (5) , 2014, 6436-6439

[13] “An Optimized Storing and Accessing

Mechanism for Small Files on HDFS”.

Shrikrishna Utpat, K. A. Dehamane,

Srinivasa Kini. Maharashtra, India.

IJARCSSE, Volume 5, Issue 1, January 2015

[14] “SFMapReduce: An Optimized MapReduce

Framework for Small Files”. Fang Zhou, Hai

Pham, Jianhui Yue, Hao Zou, Weikuan Yu,

Auburn University 978-1-4673-7891-

8/15/$31.00 ©2015 IEEE

[15] “Research on the Small Files Problem of

Hadoop”. Xiao Jun Liu, Chong Peng, Zhi

Chao Yu, Huanggang Normal University,

Hubei Huanggang, China. International

Conference on Education, Management,

Commerce and Society (EMCS 2015)

[16] Working with Small Files in hadoop – Part 1.

Chris Deptula, Feb 11, 2015

[17] Working with Small Files in hadoop – Part 2.

Chris Deptula, Feb 18, 2015

[18] “Performance enhancement for accessing

small-files in hadoop”. Varun Pal, Mrs. D.

Hemavathi, SRM University, Chennai, India.

IJERSS Volume 2 | Issue 4 APRIL 2015

[19] “Optimization Scheme for Small Files

Storage Based on Hadoop Distributed File

System”. Yingchi Mao, Bicong Jia, Wei Min

and Jiulong Wang, Hohai University, China.

International Journal of Database Theory and

Application Vol.8, No.5 (2015)

[20] “Improving Access Efficiency of Small Files

in HDFS”. Monica B. Bisane, Asst.Prof.

Pushpanjali M. Chouragade, Amravati, India.

International Journal of Scientific &

Engineering Research, Volume 7, Issue 2,

February-2016 ISSN 2229-5518

[21] “An Improved HDFS for Small File”. Liu

Changtong, Huazhong University, China.

ISBN Jan. 31 ~ Feb. 3, 2016.

[22] “HDFSX: Big Data Distributed File System

with Small Files Support”. Passent M

EIKafrawy, AmrM Sauber, Mohamed M

Hafez, Menofia University, Egypt.

9781509028634/16/$31.00 ©2016 IEEE

[23] “Optimization Scheme for Storing and

Accessing Huge Number of Small Files on

HADOOP Distributed File System”. L.

Prasanna Kumar, Sampathirao Suneetha.

Andhra University, Visakhapatnam.

IJRITCC | February 2016

[24] “An Efficient Approach for Storing and

Accessing Small Files with Big Data

Technology”. Bharti Gupta, Rajender Nath,

Girdhar Gopal, Kartik. Kurukshetra

University, Haryana, India. International

Journal of Computer Applications (0975 –

8887) Volume 146 – No.1, July 2016.

